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Power studies and synchronization

I Stable operation of the power system depends on the ability of the
power system to synchronize

I Synchronization is also found in other physical systems, like
biological, mechanical or chemical oscillators

I In simplified power system models, sophisticated synchronization
conditions can be found.

I Main goal of my work: Expand the models and try to expand current
synchronization conditions for this more complex models
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Synchronization - I

I Synchronization in dynamical systems refers to a coordinate behavior

I All oscillators rotate with a common frequency

I Angular differences are bounded

I Corresponds to the equilibrium solution to dynamical models

I Stability of synchronized solutions if equilibrium is stable
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Synchronization - II

If anyone is interested in synchronization:

Or wait for my blog entry this month . . .
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Structure-preserving model and previous results

One of the most commonly simplified model to study the power system
dynamics is the structure-preserving model:

Miθ̈ +Diθ̇ = ωi,p+
∑
j

ViVjBij sin(θi − θj)︸ ︷︷ ︸
Pe,g

i ∈ VG (1)

Diθ̇ = ωi,p+
∑
j

ViVjBij sin(θi − θj) i ∈ VL (2)

For this model, the existence and stability of a synchronized solution is
given if [1]1: ∥∥∥L†ω∥∥∥

ε,∞
≤ 1 (3)

1With the (pseudo-inverse) network laplacian L
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Reactive power

I The structure-preserving model neglects reactive power and voltage
dynamics

I Especially for load buses, reactive power flow will have a serious
impact on the voltage magnitude

I The voltage magnitude at each bus influences the coupling strength
of the network, and thus the synchronization properties

I Modeling the reactive power and treating the (load bus) voltage
magnitudes as variables results in a DAE system with the algebraic
constraint:

Qi = −
∑
j

ViVjBij cos(θi − θj) (4)
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Full model

I Proposed model: Model generators with the swing equation (as PV
buses) and loads as constant power loads

I At load bus, voltage magnitude and phase are algebraic variables (as
PQ buses)

Miθ̈ +Diθ̇ = ωi,p+
∑
j

ViVjBij sin(θi − θj) i ∈ VG (5)

Pi =
∑
j

ViVjBij sin(θi − θj) i ∈ VL (6)

Qi = −
∑
j

ViVjBij cos(θi − θj) (7)
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Problems with DAE

I Plans for the extended model
I Numerical simulations
I Finding equilibrium points
I Calculate stability of equilibrium points

I For a solution, we need consistent initial conditions → equilibrium
points

I Existence of solutions is not always guaranteed, even for consistent
initial conditions
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Loadability condition

I In steady state, the full model corresponds to the full load-flow
equations, which have to fulfill the loadability limit [2]

I The limit of the loadability is given by y∗, which can be found by
finding:

det Jy∗ = det

(∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

)
y∗

= 0
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Small signal stability

I Studying the behavior around an equilibrium point (where the
loadability limit is valid) by linearization

I With the error variables τi = θi − θ∗i and νi = Vi − V ∗i .

(
Miτ̈i +Diτ̇i

0

)
= Jy∗

(
τ
ν

)
(8)

Again, the jacobian matrix plays an important role in the dynamics of the
full model.
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Jacobian of load-flow equations

∂Pi
∂θj

=

{∑
j V
∗
i V
∗
j Bij cos(θ

∗
i − θ∗j ), if i = j

−V ∗i V ∗j Bij cos(θ∗i − θ∗j ), if i 6= j

∂Pi
∂Vj

=

{∑
j V
∗
j Bij sin(θ

∗
i − θ∗j ), if i = j

V ∗i Bij sin(θ
∗
i − θ∗j ), if i 6= j

∂Qi
∂θj

=

{
−
∑

j V
∗
i V
∗
j Bij sin(θ

∗
i − θ∗j ), if i = j

V ∗i V
∗
j Bij sin(θ

∗
i − θ∗j ), if i 6= j

∂Qi
∂Vj

=

{∑
j V
∗
i V
∗
j Bij cos(θ

∗
i − θ∗j ), if i = j

V ∗i V
∗
j Bij cos(θ

∗
i − θ∗j ), if i 6= j

With Laplacian and non-laplacian structure.
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Laplacian structure

I Laplacian of graph is a common tool used in graph theory. Encodes
the structure of the grid

I For a weighted graph with weights aij between vertex i and j, the
laplacian matrix is given as:

L =


∑

j a0j −a01 −a02 · · · −a0n
−a10

∑
j a1j −a12 · · · −a1n

...
...

...
...

...
−an0 −an1 −an2 · · ·

∑
j anj

 (9)

I L is a symmetric matrix (only real eigenvalues) with the
non-degenerate eigenvalue 02

I The laplacian is linked to the consensus protocol and the dynamics of
the linearized load-flow equations for the active power.

2For neglected reactive power and constant voltage magnitudes, the system is always
at the loadability limit.
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Other submatrix type

I The other Jacobian submatrix has a related structure to the Laplacian
matrix, with positive off-diagonal elements:

M =


∑

j a0j a01 a02 · · · a0n
a10

∑
j a1j a12 · · · a1n

...
...

...
...

...
an0 an1 an2 · · ·

∑
j anj

 (10)

I For a symmetric matrix A, M is also symmetric. It is weakly
diagonally dominant. In contrast to the laplacian, it is not always
singular, depending on the structure of the graph.
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Singularity properties

Singularity of matrices: Matrix is non-invertible, the determinant is zero,
the matrix has a zero eigenvalue Nonsingular matrices are invertible!

I Full graph: nonsingular

I Ring graph: singular if n even, nonsingular if n odd
I Random graphs:

I Erdős-Rényi graph graph: Nonsingular for N > 20
I Random geometric graph: Nonsingular
I Watts-Strogats graph: Singular in ≈ 50% of cases.

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under Marie Sklodowska-Curie grant agreement No 675318 June 30, 2017 13



Outlook

I Analytical treatment: Possible, impossible? Are there good ways to
compare the Laplacian matrices with the almost-laplacian matrices
M?

I The small signal model may be solved in the spectral domain, as was
done for the constant voltage case in [3]. For that, the matrix
properties of the jacobian, and especially the submatrices have to be
studied.

I Concentrating on numerical simulations? Instabilities observed in the
simulation, need to simulate control?
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Thanks for your attention!
Any questions?
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Singularity of M - I

Percentage of singular matrices M , for different weighted random graphs
models (Watts-Strogatz graph WSG, Erdős-Rényi graph ERG and random
geometric graphs RGG) and different realizations. Here, N is the number
of nodes and p is the rewiring probability/radius. The Watts-Strogats
graph is initially connected to two nearest neighbors.

N p WSG ERG RGG

10 0.15 54.16 32.1 −
10 0.3 45.445 3.86 1.58
10 0.6 38.3 0.0 0.0
10 0.75 38.08 0.0 0.0
20 0.15 48.58 0.44 −
20 0.3 46.54 0.0 0.0
20 0.6 44.96 0.0 0.0
20 0.75 44.16 0.0 0.0
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Singularity of M - II

N p WSG ERG RGG

30 0.15 47.94 0.0 −
30 0.3 48.19 0.0 0.0
30 0.6 45.28 0.0 0.0
30 0.75 44.58 0.0 0.0
60 0.15 49.88 0.0 −
60 0.3 48.28 0.0 0.0
60 0.6 46.7 0.0 0.0
60 0.75 47.62 0.0 0.0

120 0.15 50.96 0.0 −
120 0.3 49.6 0.0 0.0
120 0.6 47.36 0.0 0.0
120 0.75 47.72 0.0 0.0
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Singularity of M - III

For complete graphs with N edges, MF,N is given by:

MF,N =


N − 1 1 1 · · · 1

1 N − 1 1 · · · 1
...

...
...

...
...

1 1 1 · · · N − 1


Testing for linear dependency with xi, i ∈ [0, N ]. Subtracting column i
from j in the resulting linear system results in:

(N − 2)xi − (N − 2)xj = 0

∀i, j : xi = xj → xi = 0

So, all columns of M are linear independent and MF,N is non-singular.
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Singularity of M - IV

Ring graph with matrix MR,n: singular if n even, not singular if n odd!

MR,n =


2 1 0 · · · 1
1 2 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 2

 define: Kn =


2 1 0 · · · 0
1 2 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2


For the tridiagonal matrix Kn we have that detKn = n+ 13. According
to [4], we can calculate the determinant of the cyclic tridiagonal matrix as:

detMR,n =detKn + (−1)n+1

(
n∏
i=1

ai +

n∏
i=1

ci

)

− a1cnδn−1
n−1∑
k=1

1

δk−1δk

(
n∏
i=1

ai

)(
n∏
i=1

ci

)
3Because detKn = detKn−1 − detKn−2
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Singularity of M - V

Here, ai = ci = 1 and δk is the k-th leading principal minor of the matrix
Kn. Removing the last m rows and columns from Kn results in the matrix
Kn−m, thus δk = k + 1. With4,

n∑
k=1

1

k(k + 1)
=

n

n+ 1

we get:

detMR,n = n+ 1 + 2 · (−1)n+1 − (n− 1) =

{
0, if n is even

4, if n is odd

Does this explain the results for the WSG? Is that actually useful? Other
matrix properties?

4Might be well known, can be shown by simple mathematical induction.
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