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Power studies and synchronization

I Stable operation of the power system depends on the ability of the
power system to synchronize

I Synchronization is also found in other physical systems, like
biological, mechanical or chemical oscillators

I In simplified power system models, sophisticated synchronization
conditions can be found.

I Main goal of my work: Expand the models and try to expand current
synchronization conditions for this more complex models

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under Marie Sklodowska-Curie grant agreement No 675318 June 30, 2017 1



Synchronization - I

I Synchronization in dynamical systems refers to a coordinate behavior

I All oscillators rotate with a common frequency

I Angular differences are bounded

I Corresponds to the equilibrium solution to dynamical models

I Stability of synchronized solutions if equilibrium is stable
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Synchronization - II

If anyone is interested in synchronization:

Or wait for my blog entry this month . . .
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Structure-preserving model and previous results

One of the most commonly simplified model to study the power system
dynamics is the structure-preserving model:

Miθ̈ +Diθ̇ = ωi,p+
∑
j

ViVjBij sin(θi − θj)︸ ︷︷ ︸
Pe,g

i ∈ VG (1)

Diθ̇ = ωi,p+
∑
j

ViVjBij sin(θi − θj) i ∈ VL (2)

For this model, the existence and stability of a synchronized solution is
given if [1]1: ∥∥∥L†ω∥∥∥

ε,∞
≤ 1 (3)

1With the (pseudo-inverse) network laplacian L
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Reactive power

I The structure-preserving model neglects reactive power and voltage
dynamics

I Especially for load buses, reactive power flow will have a serious
impact on the voltage magnitude

I The voltage magnitude at each bus influences the coupling strength
of the network, and thus the synchronization properties

I Modeling the reactive power and treating the (load bus) voltage
magnitudes as variables results in a DAE system with the algebraic
constraint:

Qi = −
∑
j

ViVjBij cos(θi − θj) (4)
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Full model

I Proposed model: Model generators with the swing equation (as PV
buses) and loads as constant power loads

I At load bus, voltage magnitude and phase are algebraic variables (as
PQ buses)

Miθ̈ +Diθ̇ = ωi,p+
∑
j

ViVjBij sin(θi − θj) i ∈ VG (5)

Pi =
∑
j

ViVjBij sin(θi − θj) i ∈ VL (6)

Qi = −
∑
j

ViVjBij cos(θi − θj) (7)
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Problems with DAE

I Plans for the extended model
I Numerical simulations
I Finding equilibrium points
I Calculate stability of equilibrium points

I For a solution, we need consistent initial conditions → equilibrium
points

I Existence of solutions is not always guaranteed, even for consistent
initial conditions
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Loadability condition

I In steady state, the full model corresponds to the full load-flow
equations, which have to fulfill the loadability limit [2]

I The limit of the loadability is given by y∗, which can be found by
finding:

det Jy∗ = det

(∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

)
y∗

= 0
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Small signal stability

I Studying the behavior around an equilibrium point (where the
loadability limit is valid) by linearization

I With the error variables τi = θi − θ∗i and νi = Vi − V ∗i .

(
Miτ̈i +Diτ̇i

0

)
= Jy∗

(
τ
ν

)
(8)

Again, the jacobian matrix plays an important role in the dynamics of the
full model.
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Jacobian of load-flow equations

∂Pi
∂θj

=

{∑
j V
∗
i V
∗
j Bij cos(θ

∗
i − θ∗j ), if i = j

−V ∗i V ∗j Bij cos(θ∗i − θ∗j ), if i 6= j

∂Pi
∂Vj

=

{∑
j V
∗
j Bij sin(θ

∗
i − θ∗j ), if i = j

V ∗i Bij sin(θ
∗
i − θ∗j ), if i 6= j

∂Qi
∂θj

=

{
−
∑

j V
∗
i V
∗
j Bij sin(θ

∗
i − θ∗j ), if i = j

V ∗i V
∗
j Bij sin(θ

∗
i − θ∗j ), if i 6= j

∂Qi
∂Vj

=

{∑
j V
∗
i V
∗
j Bij cos(θ

∗
i − θ∗j ), if i = j

V ∗i V
∗
j Bij cos(θ

∗
i − θ∗j ), if i 6= j

With Laplacian and non-laplacian structure.
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Laplacian structure

I Laplacian of graph is a common tool used in graph theory. Encodes
the structure of the grid

I For a weighted graph with weights aij between vertex i and j, the
laplacian matrix is given as:

L =


∑

j a0j −a01 −a02 · · · −a0n
−a10

∑
j a1j −a12 · · · −a1n

...
...

...
...

...
−an0 −an1 −an2 · · ·

∑
j anj

 (9)

I L is a symmetric matrix (only real eigenvalues) with the
non-degenerate eigenvalue 02

I The laplacian is linked to the consensus protocol and the dynamics of
the linearized load-flow equations for the active power.

2For neglected reactive power and constant voltage magnitudes, the system is always
at the loadability limit.
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Other submatrix type

I The other Jacobian submatrix has a related structure to the Laplacian
matrix, with positive off-diagonal elements:

M =


∑

j a0j a01 a02 · · · a0n
a10

∑
j a1j a12 · · · a1n

...
...

...
...

...
an0 an1 an2 · · ·

∑
j anj

 (10)

I For a symmetric matrix A, M is also symmetric. It is weakly
diagonally dominant. In contrast to the laplacian, it is not always
singular, depending on the structure of the graph.
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Singularity properties

Singularity of matrices: Matrix is non-invertible, the determinant is zero,
the matrix has a zero eigenvalue Nonsingular matrices are invertible!

I Full graph: nonsingular

I Ring graph: singular if n even, nonsingular if n odd
I Random graphs:

I Erdős-Rényi graph graph: Nonsingular for N > 20
I Random geometric graph: Nonsingular
I Watts-Strogats graph: Singular in ≈ 50% of cases.
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Outlook

I Analytical treatment: Possible, impossible? Are there good ways to
compare the Laplacian matrices with the almost-laplacian matrices
M?

I The small signal model may be solved in the spectral domain, as was
done for the constant voltage case in [3]. For that, the matrix
properties of the jacobian, and especially the submatrices have to be
studied.

I Concentrating on numerical simulations? Instabilities observed in the
simulation, need to simulate control?
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Thanks for your attention!
Any questions?
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Singularity of M - I

Percentage of singular matrices M , for different weighted random graphs
models (Watts-Strogatz graph WSG, Erdős-Rényi graph ERG and random
geometric graphs RGG) and different realizations. Here, N is the number
of nodes and p is the rewiring probability/radius. The Watts-Strogats
graph is initially connected to two nearest neighbors.

N p WSG ERG RGG

10 0.15 54.16 32.1 −
10 0.3 45.445 3.86 1.58
10 0.6 38.3 0.0 0.0
10 0.75 38.08 0.0 0.0
20 0.15 48.58 0.44 −
20 0.3 46.54 0.0 0.0
20 0.6 44.96 0.0 0.0
20 0.75 44.16 0.0 0.0
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Singularity of M - II

N p WSG ERG RGG

30 0.15 47.94 0.0 −
30 0.3 48.19 0.0 0.0
30 0.6 45.28 0.0 0.0
30 0.75 44.58 0.0 0.0
60 0.15 49.88 0.0 −
60 0.3 48.28 0.0 0.0
60 0.6 46.7 0.0 0.0
60 0.75 47.62 0.0 0.0

120 0.15 50.96 0.0 −
120 0.3 49.6 0.0 0.0
120 0.6 47.36 0.0 0.0
120 0.75 47.72 0.0 0.0
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Singularity of M - III

For complete graphs with N edges, MF,N is given by:

MF,N =


N − 1 1 1 · · · 1

1 N − 1 1 · · · 1
...

...
...

...
...

1 1 1 · · · N − 1


Testing for linear dependency with xi, i ∈ [0, N ]. Subtracting column i
from j in the resulting linear system results in:

(N − 2)xi − (N − 2)xj = 0

∀i, j : xi = xj → xi = 0

So, all columns of M are linear independent and MF,N is non-singular.
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Singularity of M - IV

Ring graph with matrix MR,n: singular if n even, not singular if n odd!

MR,n =


2 1 0 · · · 1
1 2 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 2

 define: Kn =


2 1 0 · · · 0
1 2 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2


For the tridiagonal matrix Kn we have that detKn = n+ 13. According
to [4], we can calculate the determinant of the cyclic tridiagonal matrix as:

detMR,n =detKn + (−1)n+1

(
n∏
i=1

ai +

n∏
i=1

ci

)

− a1cnδn−1
n−1∑
k=1

1

δk−1δk

(
n∏
i=1

ai

)(
n∏
i=1

ci

)
3Because detKn = detKn−1 − detKn−2
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Singularity of M - V

Here, ai = ci = 1 and δk is the k-th leading principal minor of the matrix
Kn. Removing the last m rows and columns from Kn results in the matrix
Kn−m, thus δk = k + 1. With4,

n∑
k=1

1

k(k + 1)
=

n

n+ 1

we get:

detMR,n = n+ 1 + 2 · (−1)n+1 − (n− 1) =

{
0, if n is even

4, if n is odd

Does this explain the results for the WSG? Is that actually useful? Other
matrix properties?

4Might be well known, can be shown by simple mathematical induction.
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