

INCITE summer school 2017 IRP32: A new modelling approach for stabilisation of smart grids

Felix Koeth
G2Elab Grenoble

June 30, 2017

Outline

- 1. Motivation and introduction
- Properties of the DAE model
- 3. Matrix structures
- 4. Appenix: Singularity of jacobian submatrices

Power studies and synchronization

- Stable operation of the power system depends on the ability of the power system to synchronize
- Synchronization is also found in other physical systems, like biological, mechanical or chemical oscillators
- In simplified power system models, sophisticated synchronization conditions can be found.
- Main goal of my work: Expand the models and try to expand current synchronization conditions for this more complex models

Synchronization - I

- Synchronization in dynamical systems refers to a coordinate behavior
- ▶ All oscillators rotate with a common frequency
- Angular differences are bounded
- Corresponds to the equilibrium solution to dynamical models
- Stability of synchronized solutions if equilibrium is stable

Synchronization - II

If anyone is interested in synchronization:

Or wait for my blog entry this month . . .

Structure-preserving model and previous results

One of the most commonly simplified model to study the power system dynamics is the structure-preserving model:

$$M_{i}\ddot{\theta} + D_{i}\dot{\theta} = \omega_{i,p} + \underbrace{\sum_{j} V_{i}V_{j}B_{ij}\sin(\theta_{i} - \theta_{j})}_{P_{r-1}} \quad i \in \mathcal{V}_{\mathcal{G}}$$
 (1)

$$D_i \dot{\theta} = \omega_{i,p} + \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \quad i \in \mathcal{V}_{\mathcal{L}}$$
 (2)

For this model, the existence and stability of a synchronized solution is given if $[1]^1$:

$$\left\| L^{\dagger} \omega \right\|_{\varepsilon,\infty} \le 1$$
 (3)

 $^{^{1}}$ With the (pseudo-inverse) network laplacian L

Reactive power

- The structure-preserving model neglects reactive power and voltage dynamics
- ► Especially for load buses, reactive power flow will have a serious impact on the voltage magnitude
- ► The voltage magnitude at each bus influences the coupling strength of the network, and thus the synchronization properties
- Modeling the reactive power and treating the (load bus) voltage magnitudes as variables results in a DAE system with the algebraic constraint:

$$Q_i = -\sum_{i} V_i V_j B_{ij} \cos(\theta_i - \theta_j) \tag{4}$$

Full model

- Proposed model: Model generators with the swing equation (as PV buses) and loads as constant power loads
- At load bus, voltage magnitude and phase are algebraic variables (as PQ buses)

$$M_i \ddot{\theta} + D_i \dot{\theta} = \omega_{i,p} + \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \quad i \in \mathcal{V}_{\mathcal{G}}$$
 (5)

$$P_i = \sum_{j} V_i V_j B_{ij} \sin(\theta_i - \theta_j) \quad i \in \mathcal{V}_{\mathcal{L}}$$
 (6)

$$Q_i = -\sum_{j} V_i V_j B_{ij} \cos(\theta_i - \theta_j) \tag{7}$$

Problems with DAE

- Plans for the extended model
 - Numerical simulations
 - Finding equilibrium points
 - Calculate stability of equilibrium points
- lacktriangle For a solution, we need consistent initial conditions ightarrow equilibrium points
- Existence of solutions is not always guaranteed, even for consistent initial conditions

Loadability condition

- ▶ In steady state, the full model corresponds to the full load-flow equations, which have to fulfill the loadability limit [2]
- ▶ The limit of the loadability is given by y^* , which can be found by finding:

$$\det J_{y^*} = \det \begin{pmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \end{pmatrix}_{y^*} = 0$$

Small signal stability

- ► Studying the behavior around an equilibrium point (where the loadability limit is valid) by linearization
- ▶ With the error variables $\tau_i = \theta_i \theta_i^*$ and $\nu_i = V_i V_i^*$.

$$\begin{pmatrix} M_i \ddot{\tau}_i + D_i \dot{\tau}_i \\ 0 \end{pmatrix} = J_{y^*} \begin{pmatrix} \tau \\ \nu \end{pmatrix} \tag{8}$$

Again, the jacobian matrix plays an important role in the dynamics of the full model.

Jacobian of load-flow equations

$$\frac{\partial P_i}{\partial \theta_j} = \begin{cases} \sum_j V_i^* V_j^* B_{ij} \cos(\theta_i^* - \theta_j^*), & \text{if } i = j \\ -V_i^* V_j^* B_{ij} \cos(\theta_i^* - \theta_j^*), & \text{if } i \neq j \end{cases}$$

$$\frac{\partial P_i}{\partial V_j} = \begin{cases} \sum_j V_j^* B_{ij} \sin(\theta_i^* - \theta_j^*), & \text{if } i = j \\ V_i^* B_{ij} \sin(\theta_i^* - \theta_j^*), & \text{if } i \neq j \end{cases}$$

$$\frac{\partial Q_i}{\partial \theta_j} = \begin{cases} -\sum_j V_i^* V_j^* B_{ij} \sin(\theta_i^* - \theta_j^*), & \text{if } i = j \\ V_i^* V_j^* B_{ij} \sin(\theta_i^* - \theta_j^*), & \text{if } i \neq j \end{cases}$$

$$\frac{\partial Q_i}{\partial V_j} = \begin{cases} \sum_j V_i^* V_j^* B_{ij} \cos(\theta_i^* - \theta_j^*), & \text{if } i = j \\ V_i^* V_j^* B_{ij} \cos(\theta_i^* - \theta_j^*), & \text{if } i \neq j \end{cases}$$

With Laplacian and non-laplacian structure.

Laplacian structure

- ► Laplacian of graph is a common tool used in graph theory. Encodes the structure of the grid
- For a weighted graph with weights a_{ij} between vertex i and j, the laplacian matrix is given as:

$$L = \begin{pmatrix} \sum_{j} a_{0j} & -a_{01} & -a_{02} & \cdots & -a_{0n} \\ -a_{10} & \sum_{j} a_{1j} & -a_{12} & \cdots & -a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n0} & -a_{n1} & -a_{n2} & \cdots & \sum_{j} a_{nj} \end{pmatrix}$$
(9)

- ► *L* is a symmetric matrix (only real eigenvalues) with the non-degenerate eigenvalue 0²
- ► The laplacian is linked to the consensus protocol and the dynamics of the linearized load-flow equations for the active power.

 $^{^2\}mathrm{For}$ neglected reactive power and constant voltage magnitudes, the system is always at the loadability limit.

Other submatrix type

► The other Jacobian submatrix has a related structure to the Laplacian matrix, with positive off-diagonal elements:

$$M = \begin{pmatrix} \sum_{j} a_{0j} & a_{01} & a_{02} & \cdots & a_{0n} \\ a_{10} & \sum_{j} a_{1j} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n0} & a_{n1} & a_{n2} & \cdots & \sum_{j} a_{nj} \end{pmatrix}$$
(10)

▶ For a symmetric matrix *A*, *M* is also symmetric. It is weakly diagonally dominant. In contrast to the laplacian, it is not always singular, depending on the structure of the graph.

Singularity properties

Singularity of matrices: Matrix is non-invertible, the determinant is zero, the matrix has a zero eigenvalue Nonsingular matrices are invertible!

- Full graph: nonsingular
- Ring graph: singular if n even, nonsingular if n odd
- Random graphs:
 - \triangleright Erdős-Rényi graph graph: Nonsingular for N>20
 - Random geometric graph: Nonsingular
 - Watts-Strogats graph: Singular in $\approx 50\%$ of cases.

Outlook

- ▶ Analytical treatment: Possible, impossible? Are there good ways to compare the Laplacian matrices with the almost-laplacian matrices *M*?
- ► The small signal model may be solved in the spectral domain, as was done for the constant voltage case in [3]. For that, the matrix properties of the jacobian, and especially the submatrices have to be studied.
- Concentrating on numerical simulations? Instabilities observed in the simulation, need to simulate control?

Thanks for your attention! Any questions?

Bibliography I

- F. Dorfler, M. Chertkov, and F. Bullo. "Synchronization in complex oscillator networks and smart grids". In: *Proceedings of the National Academy of Sciences* 110.6 (Feb. 5, 2013), pp. 2005–2010.
- [2] T. van Cutsem and K. Vournas Costas. *Voltage Stability of Electric Power Systems*. Kluwer international series in engineering and computer science. Springer, 1998.
- [3] Nicolás Rubido. Energy Transmission and Synchronization in Complex Networks. Springer Theses. Cham: Springer International Publishing, 2016.
- [4] Savoie J. Dubeau F. "A remark on cyclic tridiagonal matrices". eng. In: *Applicationes Mathematicae* 21.2 (1991), pp. 253–256.

Singularity of M - I

Percentage of singular matrices M, for different weighted random graphs models (Watts-Strogatz graph WSG, Erdős-Rényi graph ERG and random geometric graphs RGG) and different realizations. Here, N is the number of nodes and p is the rewiring probability/radius. The Watts-Strogats graph is initially connected to two nearest neighbors.

N	p	WSG	ERG	RGG
10	0.15	54.16	32.1	_
10	0.3	45.445	3.86	1.58
10	0.6	38.3	0.0	0.0
10	0.75	38.08	0.0	0.0
20	0.15	48.58	0.44	_
20	0.3	46.54	0.0	0.0
20	0.6	44.96	0.0	0.0
20	0.75	44.16	0.0	0.0

Singularity of M - Π

N	p	WSG	ERG	RGG
30	0.15	47.94	0.0	_
30	0.3	48.19	0.0	0.0
30	0.6	45.28	0.0	0.0
30	0.75	44.58	0.0	0.0
60	0.15	49.88	0.0	_
60	0.3	48.28	0.0	0.0
60	0.6	46.7	0.0	0.0
60	0.75	47.62	0.0	0.0
120	0.15	50.96	0.0	_
120	0.3	49.6	0.0	0.0
120	0.6	47.36	0.0	0.0
120	0.75	47.72	0.0	0.0

Singularity of M - III

For complete graphs with N edges, $M_{F,N}$ is given by:

$$M_{F,N} = \begin{pmatrix} N-1 & 1 & 1 & \cdots & 1 \\ 1 & N-1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & N-1 \end{pmatrix}$$

Testing for linear dependency with x_i , $i \in [0, N]$. Subtracting column i from j in the resulting linear system results in:

$$(N-2)x_i - (N-2)x_j = 0$$

 $\forall i, j : x_i = x_j \to x_i = 0$

So, all columns of M are linear independent and $M_{F,N}$ is non-singular.

Singularity of M - IV

Ring graph with matrix $M_{R,n}$: singular if n even, not singular if n odd!

$$M_{R,n} = \begin{pmatrix} 2 & 1 & 0 & \cdots & 1 \\ 1 & 2 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 2 \end{pmatrix} \quad \text{define:} \quad K_n = \begin{pmatrix} 2 & 1 & 0 & \cdots & 0 \\ 1 & 2 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{pmatrix}$$

For the tridiagonal matrix K_n we have that $\det K_n = n + 1^3$. According to [4], we can calculate the determinant of the cyclic tridiagonal matrix as:

$$\det M_{R,n} = \det K_n + (-1)^{n+1} \left(\prod_{i=1}^n a_i + \prod_{i=1}^n c_i \right)$$
$$- a_1 c_n \delta_{n-1} \sum_{k=1}^{n-1} \frac{1}{\delta_{k-1} \delta_k} \left(\prod_{i=1}^n a_i \right) \left(\prod_{i=1}^n c_i \right)$$

³Because $\det K_n = \det K_{n-1} - \det K_{n-2}$

Singularity of M - V

Here, $a_i=c_i=1$ and δ_k is the k-th leading principal minor of the matrix K_n . Removing the last m rows and columns from K_n results in the matrix K_{n-m} , thus $\delta_k=k+1$. With⁴,

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

we get:

$$\det M_{R,n} = n + 1 + 2 \cdot (-1)^{n+1} - (n-1) = \begin{cases} 0, & \text{if } n \text{ is even} \\ 4, & \text{if } n \text{ is odd} \end{cases}$$

Does this explain the results for the WSG? Is that actually useful? Other matrix properties?

⁴Might be well known, can be shown by simple mathematical induction.

